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Abstract. We describe a simple and efficient set-up to generate and characterize femtosecond quadrature-
entangled pulses. Quantum correlations equivalent to about 2.5 dB squeezing are efficiently and easily
reached using the non-degenerate parametric amplification of femtosecond pulses through a single-pass
in a thin (100 µm) potassium niobate crystal. The entangled pulses are then individually sampled to
characterize the non-separability and the entropy of formation of the states. The complete experiment
is analysed in the time-domain, from the pulsed source of quadrature entanglement to the time-resolved
homodyne detection. This particularity allows for applications in quantum communication protocols using
continuous-variable entanglement.

PACS. 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states;
quantum state engineering and measurements – 03.67.-a Quantum information – 03.65.Wj State
reconstruction, quantum tomography

1 Introduction

Quantum correlations have properties which cannot be
reproduced by the rules of classical physics [1,2]. More
specifically, quantum entanglement is now acknowledged
as a physical resource, which is needed to perform new
quantum information processing tasks, such as quantum
teleportation, dense coding, quantum cryptography or
quantum computation [3]. To perform these protocols,
quantum continuous variables [4] have recently emerged
as a relevant alternative to discrete-levels systems. This is
particularly true in the optical domain, where entangle-
ment of quantum continuous variables provides a tool of
major importance for developing new quantum commu-
nication devices, based on homodyne detection of intense
beams, rather than photon-counting detectors.

In order to characterize simply quantum communica-
tion protocols, it is very convenient to consider them as
the exchange of some symbols, which carry the relevant
information and can be accessed individually. Hence, an
important issue for quantum communication is to develop
communication schemes operating in a pulsed regime,
that are able to manipulate individually each quantum
state involved in the exchange. The analysis of such pro-
tocols is then very easy in terms of information trans-
fers [5,6]. However, since the landmark experiment by Ou
et al. [7,8], most of the experiments relying on entan-
gled quantum continuous variables have been performed
by using continuous wave (rather than pulsed) entangled
light beams [9–18]. In addition, the characterization of the
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quantum correlations was performed in the spectral do-
main (i.e. by using radio-frequency spectrum analysers),
rather than in the time domain. As a consequence, even
if they are actually pulsed [19,20], such experiments can-
not be easily used to implement quantum communication
protocols, because they do not provide access to each indi-
vidual entangled pulse. These difficulties might be solved
by developing a quantum theory of analog modulation,
evaluating the information transfer by defining appropri-
ate time-bandwidth limited modes, and quantizing them.
But as long as no such theory has been proposed, ad-
dressing well-separated “symbols” — each associated to
one quantum state — clearly appears to be much easier,
both from a practical and a fundamental point of view.

In this article, we present a new scheme for the gener-
ation of quadrature-entangled light pulses, which can be
individually accessed and characterized. This experiment
is based on the non-degenerate parametric amplification
of ultrafast (150 fs) pulses through a single pass in a thin
potassium niobate (KNbO3) crystal. Thanks to the high
peak power of the femtosecond pulses and the high non-
linear coefficient of the KNbO3 crystal, significant quan-
tum correlations (equivalent to about 2.5 dB squeezing)
have been reached. The non-separability of the entangled
pulses is then directly characterized by a time-resolved ho-
modyne detection, which samples the quantum properties
of each individual incoming pulse.

Recently, our team has developed a similar set-up
which operated in a degenerate configuration to produce
pulsed squeezed states [21]. The experiment described
here presents some further developments of this scheme
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towards pulsed quadrature entanglement. As said above,
all our set-up operates in the pulsed regime, from the
source of entanglement to the time-resolved detection,
so our analysis is completely carried out in the time
domain, and not in the frequency domain. Since the
quadrature-entangled pulses are efficiently and easily gen-
erated through a single pass in a nonlinear crystal using
non-degenerate parametric optical amplification (NOPA),
the set-up provides a simple and compact source for pulsed
quadrature entanglement.

This paper is organized as follows: first, we review some
general results concerning the manipulation and the char-
acterization of quadrature-entanglement (Sect. 2). Then
the experimental set-up is described in details (Sect. 3)
before presenting the results of our pulsed homodyne mea-
surements (Sect. 4).

2 Quadrature entanglement: principles
and characterization

2.1 Producing entanglement: the non-degenerate
parametric amplifier

A well-known way to generate a two-mode state whose
quadrature components are entangled is to use an opti-
cal parametric amplifier in a non-degenerate configura-
tion [22,23]. Let us denote by (X, P ) the quadrature com-
ponents of one mode of the light field. These quantum
operators follow the commutation relation [X, P ] = 2iN0

and thus the Heisenberg uncertainty ∆2X ∆2P ≥ N0
2,

where ∆2(.) denotes the variance of the observable (N0 is
a scaling constant, which equals to the standard shot
noise variance). The quadrature components (XA, PA)
and (XB, PB) of the output modes (“signal” and “idler”)
of a perfect non-degenerate parametric amplifier are given
by [22,23]:

XA = cosh r XA,in + sinh r XB,in

PA = cosh r PA,in − sinh r PB,in

XB = cosh r XB,in + sinh r XA,in

PB = cosh r PB,in − sinh r PA,in (1)

where (XA,in, PA,in) and (XB,in, PB,in) stand for the in-
put modes and r is the squeezing factor, which depends on
the strength of the nonlinear interaction. In the following,
we will consider the case where the input modes are in
the vacuum state. The state generated by NOPA is then
generally called two-mode squeezed state, as it bears some
quantum correlations between the quadratures:

〈XA XB〉 = −〈PA PB〉 = sinh 2r N0 (2)

〈(XA − XB)2〉 = 〈(PA + PB)2〉 = 2 e−2r N0. (3)

In the case of infinite nonlinear effects, r → ∞, the quan-
tum correlations between the quadratures would become
perfect (e.g. 〈(XA − XB)2〉 → 0). This case corresponds
to the famous Einstein, Podolsky and Rosen (EPR)
Gedanken-experiment proposed in 1935 [1].

2.2 Characterizing entanglement: the non-separability
criterion

For a given state composed of two modes A and B, a
relevant question is to determine whether this state car-
ries some entanglement or not. For quantum continuous
variables, Duan et al. [24] and Simon [25] have indepen-
dently formulated a sufficient condition for a state to be
non-separable:

IDS =
1
2

[
∆2(XA − XB) + ∆2(PA + PB)

]
< 2 N0. (4)

Dealing with a symmetrical Gaussian two-mode state,
such as the one generated by NOPA, this condition turns
out to be a necessary and sufficient condition of non-
separability. In relation with the EPR situation quoted
above, another criterion often used to quantify the quan-
tum correlations between the entangled modes is the
“Reid-EPR” criterion [22], which applies to the prod-
ucts of the conditional variances: VXB |XA

VPB |PA
< N0

2.
Quantum states that are non-classical according to the
Reid-EPR criterion will automatically be non-separable
according to the Duan-Simon condition (4), but the re-
verse is not true. Though the Duan-Simon criterion ap-
pears less relevant with respect to the EPR situation,
we will use it in the present work, because it is quite
appropriate as a threshold for the possibility of entan-
glement distillation, which is a central goal for quantum
communications.

In the case of the state generated by perfect NOPA,
one gets IDS = 2 e−2r N0. Thus the violation of the
Duan-Simon condition for separability occurs as soon as
r > 0 and increases with the strength r of the nonlinear
interaction. This suggests to use IDS to quantify the en-
tanglement. However, a relevant measure of entanglement
has to satisfy some constraints given in [26,27]. Unfortu-
nately, IDS does not fulfil these constraints and thus does
not provide a “true” measure of entanglement. Neverthe-
less, IDS is a direct witness of non-separability and can be
used to compute a relevant measure of entanglement for
Gaussian states, as we will see now.

2.3 Quantifying entanglement: the entropy
of formation

For a bipartite pure state, the amount of entanglement is
uniquely defined by the Von Neumann entropy of one of
the sub-state [27]. However, for a mixed state, the defi-
nition of the quantity of entanglement is not unique, and
has led to different theoretical proposals. Among them,
let us pay some attention to the entropy of formation,
introduced by Wooters in [28]. This quantity represents
the number of maximally entangled pairs of qubits nec-
essary to prepare the observed correlations, and it has
been explicitly calculated in the case of Gaussian states
by Giedke and coworkers [29]. For a symmetric two-mode
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Fig. 1. Simplified scheme of the experimental set-up used
to characterize the quadrature entanglement produced during
single-pass non-degenerate parametric amplification (NOPA).
The beam (X+, P+) is then measured by a time-resolved ho-
modyne detection.

Gaussian state whose covariance matrix reads

γ =








V 0 Kx 0

0 V 0 −Kp

Kx 0 V 0

0 −Kp 0 V








(5)

the entropy of formation is then given by the formula:

EF = f

( √
(V − Kx)(V − Kp)

)
(6)

with f(x) = c+(x) log2 c+(x) − c−(x) log2 c−(x) and
c±(x) = [x−1/2 ± x1/2]2/4. Consequently, for a state gen-
erated by NOPA, the entropy of formation is directly
linked to the Duan-Simon quantity IDS as noticed in [18]:

EF = f

( IDS

2 N0

)
. (7)

2.4 Simple experimental measurements of quadrature
entanglement

The method experimentally developed here to character-
ize the Gaussian quadrature-entangled states is largely in-
spired from these theoretical results and aims at directly
measuring the Duan-Simon quantity IDS. The principle
of our scheme is depicted in Figure 1. The two entangled
modes generated by NOPA are mixed on a beamsplitter of
R = 50% reflectivity, while one output mode of the beam-
splitter is sent to a time-resolved homodyne detection for
pulse-sensitive quadrature measurements.

Let θ denote the relative phase between the entangled
pulses. When the two entangled modes A, B are mixed in
phase on the beamsplitter, θ = 0, the output mode of the
beamsplitter (X+, P+) reads:

X+ =
1√
2

(XA + XB) =
er

√
2

(XA,in + XB,in)

P+ =
1√
2

(PA + PB) =
e−r

√
2

(PA,in + PB,in) . (8)

Thus the state at the output of the beamsplitter is
a squeezed state, and the corresponding variances in

quadratures are either above or below the shot noise level:
∆2X+ = e2r N0, ∆2P+ = e−2r N0. Measuring ∆2P+ =
∆2(PA + PB)/2 with the homodyne detection gives di-
rectly one term to be used in the Duan-Simon quantity
IDS (4).

If a relative phase of θ = π is set between the two
entangled modes A, B, the output mode of the beam-
splitter (X+, P+) then reads:

X+ =
1√
2

(XA − XB) =
e−r

√
2

(XA,in − XB,in)

P+ =
1√
2

(PA − PB) =
er

√
2

(PA,in − PB,in) . (9)

This is still a squeezed state, but the squeezed quadra-
ture has now turned to the X quadrature. Measuring
∆2X+ = ∆2(XA − XB)/2 with the homodyne detection,
one gets directly the other term of the Duan-Simon quan-
tity IDS. Thus by mixing the entangled pulses on a beam-
splitter and controlling the relative phase θ between them
and between the local oscillator used in the homodyne
detection, one can measure all the relevant parameters
to express the Duan-Simon quantity IDS. More generally,
one can easily show that for any phase θ the quadrature
sin(θ/2)X+ + cos(θ/2)P+ is squeezed while the quadra-
ture cos(θ/2)X+ − sin(θ/2)P+ is anti-squeezed. Thus de-
phasing the EPR beams by θ before the recombination
makes the phase-space uncertainty ellipse turn by an an-
gle of θ/2, but it keeps the ellipticity constant.

One interesting feature of this characterization method
is that it provides simply the necessary quantity IDS to
check for the non-separability from equation (4) and to
quantify the entanglement from equation (7). Only one
homodyne detection set-up is needed, which greatly sim-
plifies the experiment. This method appears also quite
similar to the set-ups used for dense coding experi-
ments [10,30,31]. Let us now turn to the physical imple-
mentation of these principles in the pulsed regime.

3 Experimental set-up

We have recently developed a new scheme for pulsed
squeezed light generation [21]. This experiment is based
on the degenerate parametric amplification of femtosec-
ond pulses. Here we extend this experiment and pass to
the non-degenerate regime of parametric amplification.

The experimental scheme is presented in Figure 2. The
initial pulses are obtained from a cavity-dumped titanium-
sapphire laser (Tiger-CD, Time-Bandwidth Products), de-
livering nearly Fourier-transform limited pulses at 846 nm,
with a duration of 150 fs, an energy of 40 nJ, and a pulse
repetition rate of 780 kHz. These pulses are frequency
doubled in a single pass through a thin (100 µm) crys-
tal of potassium niobate (KNbO3). This crystal is set in-
side a small vacuum chamber and peltier-cooled down to
about −14 ◦C to obtain non-critical (90 degrees) type-I
phase-matching for second harmonic generation (SHG) at
846 nm. The choice for a thin crystal length allows for



394 The European Physical Journal D

λ 

λ 

λ 

Fig. 2. Experimental set-up. SHG second harmonic gener-
ation; NOPA non-degenerate parametric amplification; PZT
piezoelectric transducer; PBS polarizing beamsplitter.

a wide phase-matching bandwidth and avoids the condi-
tions of large group-velocity mismatch, contrary to the
previously reported use of thick KNbO3 crystals [32,33].
Even for the short interaction length used here, KNbO3

proved to be suitable to our applications thanks to its high
non linear coefficient (about 12 pm/V) and non-critical
phase-matching. Typically, the SHG efficiency obtained is
about 28% (corrected from losses).

A small fraction (1%) of the fundamental beam is
taken out to serve as a probe to study classical para-
metric amplification occurring in a similar KNbO3 crys-
tal used in a single-pass type-I spectrally degenerate but
spatially non-degenerate configuration. This spatial non-
degeneracy is obtained by shifting horizontally the probe
beam before focusing inside the crystal. Thanks to the
focusing lens, this shift is transformed into an angular dif-
ference between the propagation directions of the pump
and the probe beam within the crystal (see Fig. 2). For
small angular differences of about 3◦ within the crystal,
the phase-matching condition can still be fulfilled by low-
ering the temperature of the crystal by a few degrees.
The average power of the probe beam after the nonlin-
ear interaction is directly measured by a standard sili-
con photodiode, which allows to estimate the parametric
gain. For a well-chosen angular shift so that the probe
and the pump wave vectors do not overlap, the paramet-
ric gain does not depend of the relative phase between the
pump and the probe beam. This condition indicates that
the non-degenerate configuration is strictly reached over
the whole spatial extend of the beams [23,34]. We have
experimentally optimised the overlap between the pump
and the probe beam to maximise the amplification gain.
For the best configuration, the probe waist was set to be
about

√
2 times smaller than the pump waist inside the

crystal. Then, the best amplification obtained was 1.24.
This gain was checked to be independent of the probe
phase and average power.

The two beams (“signal” and “idler”) resulting from
the classical parametric amplification of the probe are
mixed on a beamsplitter of R = 50% reflectivity, in order
to implement the entanglement characterization method
described in Section 2.4. One output mode of the beam-

Fig. 3. Recorded noise pulses while linearly scanning the
LO phase, when the entangled beams are mixed in phase
(θ = 0) at the 50−50 beamsplitter. Each dot corresponds to
the measurement of one incoming pulse.

splitter is then sent to the balanced homodyne detection,
and interferes with the local oscillator beam (LO). The
homodyne detection is set to be directly sensitive to the
incoming pulse distribution in the time domain. For each
pulse, the fast acquisition board (National Instruments
PCI-6111E) samples one value of the signal quadrature
in phase with the local oscillator [6,35,36]. The data pre-
sented below is obtained directly from these individual
pulse measurements. Pulsed homodyning is technically
more challenging than frequency-resolved homodyning be-
cause low-frequency noises cannot be filtered out. Each
arm of the detection has to be carefully balanced (with
a typical rejection better than 10−4) even for ultra-low
frequency noises. By blocking the squeezed beam, the de-
tection was checked to be shot-noise limited in the time
domain, showing a linear dependence between LO power
and the noise variance up to 2.5 × 108 photons per pulse.
This corresponds to an average LO power of 45 µW, at a
repetition rate of 780 kHz and in the femtosecond regime.
The electronic noise was low enough to ensure a ratio
larger than 11 dB between shot noise and electronic noise
variances.

4 Pulsed homodyne measurements

4.1 Characterization of the non-separability criterion

The probe beam being blocked, the amplifier operates in
a pulsed parametric down-conversion regime to generate
a two-mode squeezed state. A first piezo-electric trans-
ducer allows to finely control the relative phase θ between
the two entangled pulses before the recombination beam-
splitter. A second piezo transducer is also used to control
the relative phase of the local oscillator, which commands
the quadrature component measured by the homodyne de-
tection. Figure 3 displays the recorded noise pulses while
scanning the local oscillator phase, when the quadrature-
entangled beams are mixed in phase, θ = 0. Figure 4
presents the corresponding quadrature variance, when the
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Fig. 4. Quadrature noise variance of the recombined
beam (X+, P+) (plotted in a linear scale and computed over
blocks of 2500 samples) while linearly scanning the LO phase,
together with the shot noise level (SNL) and the electronic
noise level. The curve (a) corresponds to the case when the
entangled beams are mixed in phase (θ = 0), while they are
dephased by θ = π for the curve (b).

entangled beams are in phase, θ = 0 (a), or dephased by
θ = π (b) at the 50−50 beamsplitter. As expected for the
squeezed states generated by recombining the entangled
pulses, the measured noise variance passes below the shot
noise level (SNL) for some phase values of the local oscil-
lator. The measured correlation variance (with no correc-
tion) is 0.70 N0 (–1.55 dB below the shot noise level SNL),
while the corresponding anti-squeezed variance is 1.96 N0

(2.92 dB above SNL).
To characterize the entanglement of the two-mode

state produced by NOPA, it appears logical to com-
pensate for the homodyne detection efficiency. A homo-
dyne detection with an efficiency η measures Xdet =√

ηX+ +
√

1 − ηXvac where Xvac is a vacuum mode.
Therefore, the variance of the squeezed state is ∆X2

+ =[
∆X2

det − (1 − η)N0

]
/η. The procedure to measure this

detection efficiency is well established from squeezing ex-
periments [21]. The overall detection efficiency is given
as η = ηT η2

HηD = 68%, where we have independently
measured the overall transmission ηT = 93%, the mode-
matching visibility ηH = 88% (obtained from the interfer-
ence fringes between the local oscillator and a seed beam
set for maximum classical amplification), and the detec-
tors efficiency (Hamamatsu S3883) ηD = 94.5%. Given
this evaluation of the homodyne efficiency, one can eval-
uate the correlation variance of the pulses before the ho-
modyne detection, which is found to be 0.56 N0 (–2.52 dB
below SNL).

This experiment was repeated several times for dif-
ferent relative phases θ between the entangled pulses
before the recombination. This allowed us to check
the symmetry of the state produced: we measured the
same correlation variance for θ = 0, θ = π and sev-
eral other phases (within reasonable statistical errors
less than 0.01 N0, see Fig. 4). Consequently, we can
state that the correlations between the quadratures are
equal to ∆2(XA − XB)/2 = ∆2(PA + PB)/2 = 0.56 N0.
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Fig. 5. Quadrature noise variance (dark curve) of one entan-
gled beam (plotted in a linear scale and computed over blocks
of 2500 samples) while linearly scanning the LO phase. The
other entangled beam is blocked before the 50−50 beamsplit-
ter. The second light gray curve above the SNL corresponds to
the reverse situation by blocking the other beam.

The Duan-Simon quantity amounts then to IDS =
1.12 N0, which is clearly below the threshold for separa-
bility (2 N0) given by equation (4). This results attests
for the quantum entanglement (non-separability) of the
pulsed state generated by NOPA. One may also quantify
the entanglement available thanks to the entropy of forma-
tion given by equation (7), which provides EF = 0.44 ebit.

4.2 Characterization of the covariance matrix

Theoretically, a general Gaussian state is fully charac-
terized by its mean values of quadratures together with
its covariance matrix γ, which comprises the second mo-
ments of the conjugate quadratures X, P . For a two-mode
state, the general covariance matrix γ contains 16 terms.
In our case however, the two-mode squeezed state emerg-
ing from NOPA is generated and handled in a symmetric
way. This point was experimentally checked as discussed
in the previous subsection. Consequently, for our sym-
metric state, the corresponding covariance matrix can be
reduced to the form given by equation (5), with V N0 =
∆2XA = ∆2PA = ∆2XB = ∆2PB and Kx N0 = Kp N0 =
1
2 〈XAXB + XBXA〉 = − 1

2 〈PAPB + PBPA〉. This means
that for the optimal choice of quadratures there is no
cross-quadrature correlations. Let us also point out that
for Gaussian states the covariance matrix can always be
reduced to the form (5) using local unitary operations [24].

By blocking one entangled beam before the 50−50
beamsplitter, we have measured the diagonal terms of the
covariance matrix (up to the transmission of 50% of the
beamsplitter and the homodyne detection efficiency η).
Our results using the time-resolved homodyne detection
are displayed in Figure 5. For the two entangled beams,
we have measured a variance of 1.17± 0.01 N0, which can
be related to V = 1.50 before the 50−50 beamsplitter (to
get this value, we have corrected for the 50% transmission
of the beamsplitter and the homodyne detection efficiency
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η = 68%). The off-diagonal terms in the covariance ma-
trix (5) can be evaluated by noticing that thanks to our
squeezing measurement ∆2X+ we get:

∆2X+ =
1
2

∆2(XA − XB)

=
1
2

(
∆2XA + ∆2XB − 〈XAXB + XBXA〉

)

= (V − Kx)N0. (10)

With V = 1.50 and ∆2X+/N0 = 0.56, we get directly
Kx = Kp = 0.94. Thus the reconstructed covariance ma-
trix of the experimental entangled pulses reads:

γ =









1.50 (0) 0.94 (0)

(0) 1.50 (0) −0.94

0.94 (0) 1.50 (0)

(0) −0.94 (0) 1.50









. (11)

The values set to zero due to symmetry considerations
are indicated by parenthesis. A similar procedure has al-
ready been followed by Bowen et al. [13], but in the case
of continuous-wave light detected around 3.5 or 6.5 MHz
using a spectrum analyser.

5 Conclusion

An efficient set-up to generate and characterize fem-
tosecond quadrature-entangled pulses is presented, using
a complete time domain analysis. Pulsed quadrature-
entangled beams are efficiently generated using non-
degenerate parametric amplification in a single-pass con-
figuration. This set-up leads to correlations equivalent to
about 2.5 dB squeezing, that have been recorded using a
time-resolved homodyne detection. The non-separability
of the states has then been characterized using the Duan-
Simon criterion with IDS = 1.12 N0 (< 2 N0), and the
available entanglement has been quantified using the en-
tropy of formation to EF = 0.44 ebit. The association of
this simple and compact source for quadrature entangle-
ment together with the time-resolved homodyne detection
provides all the ressources for future quantum communi-
cation protocols using continuous variable entanglement.

This work was carried out in the framework of the European
IST/FET project “COVAQIAL”.
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